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tosta.thaina@gmail.com
2 Department of Histology and Morphology, Institute of Biomedical Science,

Federal University of Uberlândia, Uberlândia, Brazil
3 Department of Computer Science and Statistics,

São Paulo State University, São José do Rio Preto, Brazil
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Abstract. For disease monitoring, grade definition and treatments ori-
entation, specialists analyze tissue samples to identify structures of dif-
ferent types of cancer. However, manual analysis is a complex task due to
its subjectivity. To help specialists in the identification of regions of inter-
est, segmentation methods are used on histological images obtained by
the digitization of tissue samples. Besides, features extracted from these
specific regions allow for more objective diagnoses by using classification
techniques. In this paper, fitness functions are analyzed for unsupervised
segmentation and classification of chronic lymphocytic leukemia and fol-
licular lymphoma images by the identification of their neoplastic cellular
nuclei through the genetic algorithm. Qualitative and quantitative anal-
yses allowed the definition of the Rényi entropy as the most adequate
for this application. Images classification has reached results of 98.14%
through accuracy metric by using this fitness function.
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1 Introduction

Lymphomas are cancers that develop in the cellular components called lym-
phocytes [1]. Their subtypes are divided into Hodgkin’s lymphoma (HL) and
non-Hodgkin’s lymphoma (NHL), which is responsible for 85% of lymphoma
cases [2]. The wide variety of NHL subtypes makes their classification and seg-
mentation complex tasks and a challenge for images analysis.
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NHL diagnoses are performed by pathologists who analyze tissue samples
stained with hematoxylin-eosin (H&E) [1]. The digitization of these samples
allows the application of computational methods that aid specialists in their
clinical decisions. Segmentation methods are applied to identify regions of inter-
est (ROIs) that indicate the NHL incidence. The segmentation application allows
the extraction of highly specific features from ROIs, which can improve the clas-
sification performance [1]. Using these features, classification techniques can aid
in diagnoses definition [3].

There are two classes of the NHL that are investigated in literature and
addressed by this work: chronic lymphocytic leukemia (CLL) and follicular lym-
phoma (FL). CLL is a different manifestation type of small lymphocytic lym-
phoma. It is the most frequent case of leukemia in western countries, with an
incidence of 30%. FL is the second most common type of B-cells lymphoma in
the classification defined by the world health organization [4].

Some studies propose the segmentation of histological images of these
lesions. [5,6] presented segmentation methods of lymphocytes on blood images
of CLL with 100× magnification. Both works were evaluated with ROIs localized
in the center of the images. In [5], the authors also considered an uniform illumi-
nation condition and [6] presented limitations for overlapping cells segmentation.

For FL images, there are many works proposed due to its high incidence
rate [4], such as [7–9]. Segmentation of these images is divided into the identi-
fication of centroblasts and follicular regions, with some limitations addressed
by this work. [9] presented limitations due to the merging of different identified
ROIs. This is a common condition, as indicated by [5,8–10]. Moreover, studies
as [7,11–13] presented methods that employed images stained with IHC and H&E
for FL segmentation. Thus, these methods require these two types of images for
application.

Due to empirical definition of threshold values, [14–17] become not sufficiently
robust for application on different images. In the studies of [3,9], the authors indi-
cated limitations for processing low magnification images and low quality images
resulting from the tissue sample preparation. Using private images datasets, the
correlated works can present poor performance when applied on public images
that have great variations of contrast and illumination. Thus, it is important to
use public images to demonstrate the robustness of new proposals [18].

Thresholding is a major method for efficient segmentation of different his-
tological structures [19]. The optimization method of genetic algorithm (GA) is
a powerful technique to define the best threshold values due to its efficiency in
complex combinatorial problems. Besides, GA explores its search space in a par-
allel way with no local convergence of its result [20]. Using this technique, it is
possible to efficiently explore the parameters used for the definition of threshold
values.

The information used by the GA method in its search for the best solution
is the fitness function [21]. This function is responsible for the evaluation of
the individuals, playing an essential role in the algorithm by defining the best
solutions through its maximization. Since this function defines the algorithm
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execution, explore different fitness functions is necessary so the best threshold
values of segmentation can be obtained.

This paper presents an algorithm to aid specialists in diagnoses of CLL and
FL using segmentation and classification steps. Neoplastic nuclei were segmented
through the evaluation of the metrics of Fisher information and the entropies
of Rényi, Shannon and Tsallis as GA fitness function for quantifying extracted
information. Intensity and texture features were classified by the support vector
machine (SVM) method to obtain objective diagnoses. The main contribution
of this study is the evaluation of these different quantitative metrics to best
associate the image intensity levels to the neoplastic nuclei of CLL and FL his-
tological images. Besides, the evaluation of the proposed method was performed
on images from a public domain that are characterized by color variations found
in clinical practices.

2 Materials and Methods

This section describes the used image dataset, the proposed algorithm, the ana-
lyzed fitness functions and the quantitative evaluation metrics.

2.1 Images Dataset

The used lymphoma cases were digitized with a Zeiss Axioscope microscope with
white light, objective lens of 20× and a CCD AxioCam MR5 color camera. All
images were obtained under the same configuration of the used equipment for
digitization of histological samples stained with H&E. The resulting images are
represented by the RGB color model with 24 bits of quantization, available for
download at [22].

The public images used for validation of the proposed method compose a set
of 12 and 62 images of CLL and FL, respectively. In both classes, each case has
almost 2,000 cells, a quantity close to other studies dedicated to segmentation
of histological and cytological images [12,23].

2.2 Proposed Algorithm

Figure 1 illustrates the methodological sequence used for development of the
proposed method. This work used the MATLAB R© language for implementation
of the proposed method.

In the preprocessing step, the R channel from RGB color model was extracted
for having the greatest contrast difference in relation to the image back-
ground [24]. The histogram equalization technique was applied to deal with
variations of contrast and illumination. This method allows the redistribution of
image intensity levels, leading to a histogram with an uniform distribution. Thus,
the images are now characterized by a greater contrast [25]. Subsequently, the
Gaussian filter was used for small noise removal and image smoothing.
This method consists of a convolution process with a mask characterized by
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Fig. 1. The methodological sequence used by the proposed algorithm for segmentation
and classification of CLL and FL images.

its elements distribution defined by a 2-dimensional Gaussian function [25]. For
its application, the mask size was assigned to 3×3 pixels and the σ variable was
given by the value 2, which were empirically defined. The results of the chan-
nel extraction and application of histogram equalization and Gaussian filter are
illustrated by Fig. 2(b) and (c), respectively.

Following, a thresholding method based on a fuzzy 3-partition technique [26]
segmented the neoplastic nuclear regions. For this purpose, the S and Z functions,
represented by Eqs. 1 and 2, define a membership degree of each intensity level
(k) to the investigated structures: neoplastic nuclei, cytoplasm and background.
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Fig. 2. Example of application of preprocessing, segmentation and post-processing
steps on a subimage of sj-05-5389-R1 012 case from FL class: (a) original image,
(b) R channel from the previous image, (c) resulting image of preprocessing, (d) result-
ing image of segmentation using GA and Shannon entropy, with more than one nucleus
identified as one object indicated by red rectangles, (e) result of valley-emphasis appli-
cation with indication of corrected regions, and (f) result of morphological operations
of dilation and opening.

In this case, it is necessary to compute two threshold values to separate these three
regions of the images. So, two pairs of these functions were calculated.

S(k, u, v, w) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, k ≤ u

1 − (k − u)2

(w − u) · (v − u)
, u < k ≤ v

(k − w)2

(w − u) · (w − v)
, v < k ≤ w

0, k > w

(1)

Z(k, u, v, w) = 1 − S(k, u, v, w). (2)

These functions allow the assignment of pixels to three fuzzy sets, defined by
Eqs. 3, 4 and 5, that correspond to membership degrees to neoplastic nuclei,
cytoplasm and image background, respectively.

Mn(k) = S(k, u1, v1, w1), (3)

Mc(k) =
{

Z(k, u1, v1, w1), k ≤ w1,
S(k, u2, v2, w2), k > w1,

(4)

Mb(k) = Z(k, u2, v2, w2), (5)

where, u1, v1, w1, u2, v2 and w2 (0 ≤ u1 < v1 < w1 < u2 < v2 < w2 ≤ 255) are
parameters that determine the membership degrees distribution. The threshold
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values (t1 and t2) are defined by the intersection points of Mn and Mc, and Mc

and Mb.
The GA algorithm was used to assign intensity values to u1, v1, w1, u2, v2

and w2 with an initial random generation of 60 possible solutions coded by six
values using the preprocessed image normalized histogram. Each individual was
evaluated by a fitness function. The Fisher Information metric (FIM), defined
by [27], was one of the evaluated GA fitness functions (H ):

H(u1, v1, w1, u2, v2, w2) = wn · In + wc · Ic + wb · Ib, (6)

In =
1

wn

t1∑

i=1

(Pi+1 − Pi)2

Pi
, (7)

Ic =
1
wc

t2∑

i=t1+1

(Pi+1 − Pi)2

Pi
,

Ib =
1
wb

255∑

i=t2+1

(Pi+1 − Pi)2

Pi
,

where, wi represents the probabilities of intensity levels of the investigated struc-
tures (neoplastic nuclei, cytoplasm and background):

wn =
t1∑

i=0

Pi, wc =
t2∑

i=t1+1

Pi, wb =
255∑

i=t2+1

Pi, (8)

where, Pi is the probability of the intensity level i, i.e. the number of pixels with
intensity i divided by the total number of pixels in the image.

The Rényi entropy metric (REM) was also used, as expressed by [28]:

H(u1, v1, w1, u2, v2, w2) =
1

1 − α

⎡

⎣ln

t1∑

i=0

(
Pi

Pn

)α
⎤

⎦

+
1

1 − α

⎡

⎣ln

t2∑

i=t1+1

(
Pi

Pc

)α
⎤

⎦

+
1

1 − α

⎡

⎣ln

255
∑

i=t2+1

(
Pi

Pb

)α
⎤

⎦ ,

(9)

with the empirical assignment of 2 to α and the probabilities Pn, Pc and Pb

representing the probabilities of each investigated structure:

Pj =
255∑

k=0

h(k) · Mj(k), (10)
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where, j = {n, c, b}, Mj(k) corresponds to the fuzzy sets defined by Eqs. 3, 4
and 5 and h(·) represents the image normalized histogram.

The Shannon entropy metric (SEM) [29] also evaluated the values of u1, v1,
w1, u2, v2 and w2, defined by:

H(u1, v1, w1, u2, v2, w2) = −Pn · log(Pn) − Pc · log(Pc) − Pb · log(Pb). (11)

The Tsallis entropy metric (TEM) was also used, defined by Eqs. 12
and 13 [30]:

H(u1, v1, w1, u2, v2, w2) = Sn
q + Sc

q + Sb
q

+ (1 − q) · (Sn
q · Sc

q + Sn
q · Sb

q + Sc
q · Sb

q)

+ (1 − q)2 · Sn
q · Sc

q · Sb
q , (12)

Sj
q =

1 − ∑ub
i=lb(P

j
i )

q

q − 1
, (13)

where, the constant q was empirically assigned to 10 and it represents an index
that denotes the degree of nonextensivity. P j

i represents the normalization of
the probabilities of each investigated structure (j = {n, c, b}) defined by the
intensity values between its lower bound (lb) and upper bound (ub):

Pn =
P1, ..., Pt1

wn
, P c =

Pt1+1, ..., Pt2

wc
, P b =

Pt2+1, ..., P255

wb
. (14)

Then, the GA used an elistim process in which only 30% of the individuals that
have reached the best results of the fitness function were preserved in subsequent
iterations. For the population to have 60 individuals again, the crossover step
was applied selecting individuals for combination through a crossover probability
of 0.65. The crossover point, that defines the combination point between two
individuals, was randomly obtained in the interval [1, 6], corresponding to the
parameters of the fuzzy 3-partition technique. The populational diversity was
then guaranteed by the mutation step. This process randomly changes some
parameters of the individuals through the definition of a mutation probability
equal to 0.01.

The termination condition of the GA method was based on the approach
of [31]. In this method, if the average of intensity levels of each identified struc-
ture was the same over two consecutive iterations, the algorithm execution is
interrupted. The segmentation result is exemplified by Fig. 2(d), where it is
noticeable some limitations.

To refine the segmentation results, a post-processing step was necessary. Ini-
tially, segmented regions with areas smaller than 10 pixels were removed due to
their correspondence to false positive regions. The segmentation was not able to
individually identify some neoplastic nuclei. These regions, highlighted by red
rectangles in Fig. 2(d), were characterized by inter-nuclear regions with intensity
levels brighter than the ROIs. Thus, the valley-emphasis method [32] was locally
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applied on segmented regions with areas bigger than 80 pixels, an indicative con-
dition of representation of more than one segmented nucleus as one object. This
method defined as its threshold value (T ) the valley regions of the preprocessed
image histogram to identify neoplastic nuclei and inter-nuclear regions. Its appli-
cation is based on Eq. 15:

T = max{(1 − pt) · (ω1(t)μ2
1(t) + ω2(t)μ2

2(t))}, (15)

where, ω corresponds to the probability of neoplastic nuclei and inter-nuclear
regions and μ represents the average of the intensity levels of these regions. The
result of this application is presented in Fig. 2(e), where regions in red rectangles
can be compared with their correspondences in the segmentation result.

Finally, the morphological operations of opening and dilation were applied.
The opening allows to increase space between objects, smooth contours and
remove small noises, meanwhile, the dilation increases the objects areas and fills
small holes [25]. The structuring elements of opening and dilation operations, in
this study, had disk and square distributions, respectively, with their parameters
assigned to the value 2. The result of these operations is illustrated in Fig. 2(f),
where it is possible to note a better representation of nuclear contours and their
internal regions.

Using the segmented regions, intensity features (mean, median, standard
deviation, kurtosis, skewness, variance, 1-norm, 2-norm and entropy) were
extracted from the R, G and B channels and grayscale images, as explored
in [33]. Measures of median, standard deviation, entropy and energy were also
extracted from the diagonal, horizontal and vertical sub-bands of Daubechies4
wavelet, which has a perfect reconstruction compared to other wavelet types [34],
composing a texture descriptor of the image [35]. The classification step was
performed through the SVM method with the radial basis function and the
cross-validation method with 10 folds.

2.3 Evaluation Metrics

The images manually segmented by a pathologist were used to evaluate the
results. It was possible to obtain the measures of accuracy (Ac), sensitivity (Se)
and specificity (Sp) by analyzing the pixels identified by both segmentations.
These pixels were divided into four possible classes: true positive (TP), corre-
sponding to correct identifications, true negative (TN) that represents the pixels
correctly undetected, false positive (FP) that presents the amount of incorrectly
detected pixels, and false negative (FN) that denotes incorrectly undetected pix-
els [36]. These metrics are expressed by:

Ac =
TP + TN

TP + TN + FP + FN
, (16)

Se =
TP

TP + FN
, Sp =

TN

TN + FP
. (17)
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These metrics were also used for classification evaluation. High values of Eqs. 16
and 17 represent better results of segmentation and classification. For classifica-
tion evaluation, the metric of concordance probability (Cp), defined by the prod-
uct between the sensitivity and specificity, was also used for expressing the area
of a rectangle associated with the receiver operating characteristic curve [37,38].
In this way, the higher the rectangle area, the better the classification.

3 Results and Discussion

Figures 3 and 4 exemplify the results of CLL and FL images segmentation,
respectively, where yellow arrows were used to indicate some false negative
regions and green arrows for some false positive identifications. Application of the
Fisher information (Figs. 3(c) and 4(c)) and the entropy of Tsallis (Figs. 3(f)
and 4(f)) presented an expressive amount of false negative regions, mainly in
the CLL lesion. Due to their similar amounts of false positive and false neg-
ative regions identified and the fewer number of over or under segmentation
regions, the results achieved with the Rényi and Shannon entropies are the most
adequate.

Fig. 3. Application of the proposed method on a subimage of sj-03-852-R2 012 case
from CLL: original image (a), manually segmented image (b), segmentation result using
the Fisher information (c) and the entropies of Rényi (d), Shannon (e) and Tsallis (f).

The accuracy, sensitivity and specificity results of segmentation are presented
by Table 1 by the metrics of mean and standard deviation of five executions
of the proposed segmentation algorithm. For both lesions, the best results of
accuracy and specificity were obtained by the Tsallis entropy. However, this
function has reached the worst results of sensitivity. In comparison to the best
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Fig. 4. Application of the proposed method on a subimage of sj-05-5389-R1 012 case
from FL class: original image (a), manually segmented image (b), segmentation result
using the Fisher information (c) and the entropies of Rényi (d), Shannon (e) and
Tsallis (f).

Table 1. Mean and standard deviation results of five executions of CLL and FL seg-
mentations using the fitness functions of FIM, REM, SEM and TEM through accu-
racy (%), sensitivity (%) and specificity (%) metrics.

Fitness
functions

CLL segmentation FL segmentation

Ac Se Sp Ac Se Sp

FIM 79.42
(0.26)

45.22
(1.08)

87.97
(0.58)

81.82
(0.30)

55.55
(0.96)

85.64
(0.46)

REM 80.42
(0.14)

42.48
(1.04)

88.15
(0.60)

82.39
(0.25)

54.35
(1,93)

85.31
(2.38)

SEM 80.55
(0.22)

43.00
(0.79)

88.10
(0.19)

82.78
(0.26)

53.24
(0.78)

86.97
(0.32)

TEM 82.82
(0.33)

17.34
(1.27)

95.79
(0.43)

86.72
(0.09)

22.68
(0.92)

95.57
(0.17)

results of this metric, differences of 27.88% and 32.87% were obtained for the
CLL and FL lesions, respectively. Despite its good sensitivity results, the Fisher
information had a poor performance in the proposed segmentation, as illustrated
by the Figs. 3 and 4. The analysis of the obtained results points out the good
performance of Rényi entropy. In comparison with the best results of accuracy,
sensitivity and specificity, this function has obtained differences of 2.40%, 2.74%
and 7.64% for CLL segmentation and 4.33%, 1.20% and 10.26% for the FL
lesion. Through this analysis, it is possible to define the Rényi entropy as the
most adequate fitness function for the proposed algorithm.
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The Wilcoxon rank sum test was performed with a significance level of 5%
for evaluation of the color and texture features obtained by the different fitness
functions used in the segmentation step. The null hypothesis is that the features
from CLL and FL segmented nuclei compose samples from continuous distribu-
tions with equal medians. As it can be seen on Fig. 5, all investigated functions
have presented a number of relevant features higher than 50%.

Fig. 5. Wilcoxon rank sum test for CLL×FL classification using GA segmentation with
Fisher information and entropies of Rényi, Shannon and Tsallis.

The nuclear segmentation methods for H&E images of [39,40] were used
for comparison with the proposed segmentation technique. The segmentations
proposed by these studies do not use any search method, like the GA. The study
of [39] presented a segmentation method of cellular nuclei with the extraction of
the R channel from RGB color model and the application of the Gaussian filter
and the morphological operations of erosion and dilation in the preprocessing
step. In the segmentation, this proposal used the radial symmetry transform
and the Otsu thresholding to reduce the over-segmentation of the watershed
algorithm applied. The post-processing was composed of the removal of false
positive regions by morphological operations. [40] initially used a deconvolution
method for application of the opening reconstruction on the hematoxylin channel
obtained. The segmentation of cellular nuclei was performed by a multilevel
thresholding based on the Otsu method. Finally, the morphological operations
of opening and hole filling were applied in addition to the removal of false positive
regions by its area.

As illustrated by Fig. 6, the results of [39] are not satisfactory for this appli-
cation. For the CLL segmentation, this technique has reached 77.07%, 21.01%
and 88.10% of accuracy, sensitivity and specificity, respectively. In the FL
segmentation, the results of accuracy, sensitivity and specificity of [39] were
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Fig. 6. Segmentation results of [39](a)(c) and [40](b)(d) applied to CLL and FL images.

79.38%, 25.66% and 86.78%, respectively. [40] obtained better results but with
more false positive regions, as indicated by its specificity, with values of 72.57%
and 75.30% for CLL and FL images, respectively. In combination with sensitiv-
ity of 70.39% for CLL and 69.95% for FL, lower accuracy values were obtained:
71.97% and 74.56% for CLL and FL, respectively.

Table 2 presents the quantitative results of CLL×FL classification. Among
the evaluated fitness functions, the Rényi entropy has reached the best results
in the metrics of accuracy and specificity. The worst results were reached by the
Fisher information and intermediate results were obtained by the entropies of
Shannon and Tsallis. Through the concordance probability metric, it is notice-
able the relevant performance of the Rényi entropy applied in the segmentation,
which allowed to obtain the most discriminant features between CLL and FL
neoplastic nuclei.

Table 2. Results of CLL×FL classification using the fitness functions of FIM, REM,
SEM and TEM through accuracy (%), sensitivity (%) and specificity (%) metrics com-
puted by the 10-fold cross-validation, and the concordance probability.

Fitness functions Classification

Ac Se Sp Cp

FIM 90.54 100.00 41.67 0.4167

REM 98.14 99.33 83.33 0.8277

SEM 91.89 100.00 50.00 0.5000

TEM 93.24 100.00 58.33 0.5833

Table 3 presents the classification results of TP, FP, TN and FN, with a high
rate of true positive samples identified by the analyzed fitness functions. Consid-
ering false positive and false negative rates, the Rényi and Tsallis entropies have
reached the highest values of these metrics, respectively. This indicates that the
regions identified by these entropies contribute to misclassification, demanding
a detection step to remove false positive and false negative regions segmented.
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Table 3. Confusion matrix of the proposed classification computed by the 10-fold
cross-validation using different GA fitness functions for neoplastic nuclei segmentation.

Folds FIM REM SEM TEM

TP FP TN FN TP FP TN FN TP FP TN FN TP FP TN FN

Fold 1 6 1 0 0 6 1 0 0 7 1 0 0 7 0 0 1

Fold 2 12 1 0 1 12 1 0 1 13 1 0 1 13 1 0 1

Fold 3 18 1 0 2 18 2 0 1 19 1 0 2 19 1 0 2

Fold 4 24 1 0 3 25 2 0 2 25 2 0 2 25 2 0 2

Fold 5 30 1 0 4 31 4 0 2 32 2 0 3 31 4 0 2

Fold 6 37 2 0 4 37 6 0 2 38 3 0 3 37 4 0 3

Fold 7 43 3 0 4 44 6 0 3 44 4 0 4 43 4 0 4

Fold 8 49 4 0 4 50 7 0 3 50 5 0 5 49 4 0 5

Fold 9 56 5 0 5 56 8 0 3 56 5 0 6 56 5 0 6

Fold 10 62 7 0 5 62 8 0 4 62 6 0 6 62 5 0 7

4 Conclusion

To define diagnoses of different types of cancer, the identification of indicative
regions of these diseases in histological images is an essential task. When man-
ually performed by pathologists, this task becomes time-consuming and sub-
jective. In order to obtain objective diagnoses, segmentation and classification
techniques are able to aid specialists.

In this study, an unsupervised segmentation algorithm of neoplastic nuclei of
CLL and FL was presented with an evaluation of different GA fitness functions.
Experimental results defined the Rényi entropy as the most adequate for this
application. In comparison to Fisher information and the entropies of Shannon
and Tsallis, the Rényi entropy was the one that best quantitatively evaluated
the membership degrees of the intensity levels, which allowed to obtain the most
adequate threshold values for the segmentation of CLL and FL neoplastic nuclei.
Through intensity and texture features extracted from the segmented regions,
it was possible to classify the images using the SVM method. With 98.14%
of accuracy in the images classification, the proposed algorithm indicates the
importance of the segmentation step for definition of diagnoses of CLL and FL.

A limitation of the proposed method was the false positive and false negative
regions identified in the segmentation. Thus, in future works, additional features
to the intensity information used in the segmentation will be explored to correctly
identify the ROIs of CLL and FL images.
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